Transportation Planning in Supply Chains

Talk at SMARTLOG Workshop Trondheim, June 9 2005

Dr. scient. Geir Hasle Chief Research Scientist, SINTEF Applied Mathematics

Outline

Motivation

- Transportation planning tasks
- Focus: Vehicle Routing
- Decision Support Technology

Challenges

Main messages

- Transportation is an important part of the supply chain
- Complex decision problems at multiple levels
- Improvement potential through better co-ordination
- Need for decision-support technology
- Technology implemented at an increasing rate
- Still many challenges
- More research and technology development needed

Efficient transportation is important

- Norway: 16.900 companies
- Annual turnover 44 billion NOK
- Transportation some 10-15 % of GNP in western countries
- "Lastebilundersøkelsen", Statistics Norway (2002)
 - 12,7 billion ton kilometers
 - 31,2 million trips 18,1 million with load
 - Total capacity utilization 46,7 %
 - Capacity utilization with load: 63 %
- Huge volumes, important to society and businesses
- Small relative improvements may give huge effects
 - economy
 - environment
 - customer service

(EU 1/2 million)

(EU 1.200 billion)

Challenges

- Lack of efficiency uncoordinated, unnecessary driving
- Customer service, punctuality, short lead times
- Increased dynamics need for increased reactivity
- Today: Manual planning predominates
 - complex
 - time consuming
 - first feasible solution
 - route revision may take years, MNOK
- Remedies
 - structural changes
 - co-ordination
- Potential for improvement: efficiency, customer service, reactivity
- Need for "coordination technology" decision support systems

Tasks in transportation management

- (Re)configuration of transportation network
- Fleet dimensioning
- Route design and fleet management, vehicle routing
 - Allocation of order to vehicle
 - Sequencing of stops in a tour
- Distance / time / cost from A to B?

Transportation Management

- Strategic, tactical, operative, dynamic (real-time) decisions
- Often complex, several causes
 - Information availability
 - Uncertainty, dynamics
 - Management policies, practical limitations
 - Computational complexity
 - Response times
- Often need for tools
 - Distribution network design
 - Fleet dimensioning
 - Route design, real-time routing
 - Interaction human planners system
- Tools are implemented at an increasing rate
 - Awareness
- Challenges

Tools in transport management - prerequisites for positive effects

- Solve the right problem
- Information availability, quality
- User acceptance
- User interface
- User training
- Organizational changes
- SW Integration
- Underlying solution methods

Mathematical formulation of optimal route design (with time windows, VRPTW)

minimize

\sum	\sum	$c_{ij} x_{ij}^k$
$k \in V$	$(i,j) \in A$	

(1) minimize transport costs

subject to:

$\sum_{k \in V} \sum_{j \in N} x_{ij}^k = 1,$	$\forall i \in C$	(2)	each customer served	
$\sum_{i \in C} d_i \sum_{i \in N} x_{ij}^k \le q,$	$\forall k \in V$	(3)	vehicle capacity constraint	
$\sum_{i=N} x_{0j}^k = 1,$	$\forall k \in V$	(4)	k tours out of depot	
$\sum_{i=1}^{j\in\mathbb{N}} x_{ih}^k - \sum_{i=1}^{k} x_{hj}^k = 0,$	$\forall h \in C, \ \forall k \in V$	(5)	flow conservation at customer	
$\sum_{i\in N} x_{i,n+1}^k = 1,$	$\forall k \in V$	(6)	k tours into depot	
$x_{ij}^k(s_i^k + t_{ij} - s_j^k) \le 0,$	$\forall (i, j) \in A, \ \forall k \in V$	(7)	sequence, travel time	
$a_i \leq s_i^k \leq b_i,$	$\forall i \in N, \ \forall k \in V$	(8)	time window at customer	
$x_{ii}^k \in \{0,1\},$	$\forall (i, j) \in A, \ \forall k \in V$	(9)	vehicle k travels from i to j	

VRP Instance

() SINTEF

VRP Solution – Routing Plan

Some problems are harder than others - computationally

- Best route from A to B in a road network (NAF, Visveg, Michelin, ...)
 - Shortest Path Computing time depends on size of network
 - Polynomial growth, computationally tractable problem
 - Challenges: Information quality, very large road networks
 - Speed information, time-varying speeds, ...
- Find the best sequence of multiple stops in a tour
 - Traveling salesman problem, TSP
 - Computing time depends on number of stops
 - Computing time grows "exponentially", computationally intractable problem
 - Depends on solving many SPP
- Design routing plan for vehicles and transportation problems
 - Vehicle Routing Plan (VRP)
 - Generalization of TSP
 - Computing time grows "exponentially", computationally intractable problem
 - Depends on solving many SPP

Some Major Variants of the VRP

- Pickups, deliveries, pickup and delivery
- Spit deliveries allowed?
- Single depot / multiple depots
- Fleet homogeneous or not
- Fleet to be determined or not
- Capacity dimensions
- Time windows
 - none, single, multiple
 - hard or soft
- Periodic orders
- Orders on points or on arcs
- Inventory routing
 - Transport modality, type of goods

Extensions in the VRP Literature

- Location Routing
- Fleet Size and Mix
- VRP With Time Windows
- General Pickup and Delivery
- Dial-A-Ride
- Periodic VRP
- Inventory Routing
- Dynamic VRP
- Capacitated Arc Routing Problem

LRP FSMVRP VRPTW GPDP DARP DVRP IRP DVRP CARP

Real-life Applications need Rich Models

Types of Operation, Services

- multiple depots
- mix of pickup and delivery
- order splitting
- arc routing
- Constraints
 - capacity
 - time windows
 - precedences
 - incompatibilities
 - driving time restrictions
- Objective
 - multiple components
 - soft constraints
- Uncertainty, dynamics
- Extensions in the literature address aspects

State-of-the-art: Exact methods

Basic VRP with Capacity Constraints

- Solves instances up to 50 orders
- VRP with time windows (VRPTW)
 - Finding a feasible solution is computationally intractable
 - Solves instances up to 100 orders

For most applications (and generic tools) we have to use approximation methods that cannot give strong guarantees

- The VRP has not yet been solved
 - ... and will not be solved in the foreseeable future
- development of better VRP algorithms has industrial impact

Goal: Good solutions, in due time

Approaches

- Conventional Approach in OR
 - Extensions studied in isolation
 - Taxonomy of VRPs
 - Successful
 - Increased Understanding
 - High-performance, algorithmic approaches
 - Robustness?
- Complementary Approach
 - Generic, rich model
 - Uniform algorithmic approach
 - Robustness
 - Industrial impact
- Cross-fertilization

19

The SINTEF Generic VRP Solver - SPIDER

- Designed to be widely applicable
- Based on generic, rich model
 - order types
 - various constraints
 - cost components
 - capacity dimensions
 - driver regulations
- Predictive route planning
- Plan repair, reactive planning
- Robust anytime algorithms
- Uniform algorithmic approach
- Scalability
- Commercialized
- Framework for VRP research

Optimization approach

- Heuristic, does not guarantee optimal solutions
- Good solutions in reasonable time
- Same machinery for all problems
 - Generate initial solution with fast heuristics
 - improve by local modifications
 - restart
- How good is this?
- Assessment through testing
 - Industrial problems
 - Standard benchmarks from scientific literature
 - "World Champoinship in Vehicle Routing"

Computational experiments **PDPTW** <u>http://www.top.sintef.no/</u>

- 354 standard test instances: 100 1.000 orders
- June 2003: SINTEF has produced best known solution on 273
- Today:

Author	100	200	400	600	800	1000	Total
Li & Lim	41	15	6	3	0	2	67
SINTEF	13	12	5	4	9	37	80
BVH	2	8	8	3	4	13	38
TS	0	1	2	0	0	6	9
SR	0	24	39	50	47	-	160
Total	56	60	60	60	60	58	354

() SINTEF

Anvendt matematikk

24

Ongoing work at SINTEF

Stochastic and dynamic routing (DOiT project 2004-2007)

- including uncertainty in the model
- dynamic revision
 - new orders
 - delays
 - new information on quantities
 - traffic conditions

Huge scale routing problems (EDGE project 2005-2008)

- integration transportation control tech / routing tech
- efficient acquisition of basic information
- plan management
- VRP resolution

- Innovation project partly financed by Research Council of Norway
- Totale kostnader ~16 MNOK
- **2004** 2007

EDGE – Project Organization

Main messages

- Transportation is an important part of the supply chain
- Complex decision problems at multiple levels
- Improvement potential through better co-ordination
- Need for decision-support technology
- Technology implemented at an increasing rate with success
- Still many challenges
 - stochastic and dynamic models
 - huge-scale instances
 - integrated models
- Calls for collaboration in the RTD supply chain
 - academia
 - applied research
 - tool vendors
 - industry

Road may be short from basic research to industrial gains

Transportation Planning in Supply Chains

Talk at SMARTLOG Workshop Trondheim, June 9 2005

Dr. scient. Geir Hasle Chief Research Scientist, SINTEF Applied Mathematics